Detecting communities using asymptotical Surprise

نویسندگان

  • Vincent A. Traag
  • Rodrigo Aldecoa
  • Jean-Charles Delvenne
چکیده

Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community detection in weighted brain connectivity networks beyond the resolution limit

Graph theory provides a powerful framework to investigate brain functional connectivity networks and their modular organization. However, most graph-based methods suffer from a fundamental resolution limit that may have affected previous studies and prevented detection of modules, or "communities", that are smaller than a specific scale. Surprise, a resolution-limit-free function rooted in disc...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

SurpriseMe: an integrated tool for network community structure characterization using Surprise maximization

SUMMARY Detecting communities and densely connected groups may contribute to unravel the underlying relationships among the units present in diverse biological networks (e.g. interactomes, coexpression networks, ecological networks). We recently showed that communities can be precisely characterized by maximizing Surprise, a global network parameter. Here, we present SurpriseMe, a tool that int...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Detecting communities of workforces for the multi-skill resource-constrained project scheduling problem: A dandelion solution approach

This paper proposes a new mixed-integer model for the multi-skill resource-constrained project scheduling problem (MSRCPSP). The interactions between workers are represented as undirected networks. Therefore, for each required skill, an undirected network is formed which shows the relations of human resources. In this paper, community detection in networks is used to find the most compatible wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 2015